Algebra Order of Operation http://www.studygs.net/pemdas

Parenthesis | Exponents | Multiplication | Division | Addition | Subtraction

- 1. Perform the operations inside a parenthesis first
- 2. Then exponents
- 3. Then multiplication and division, from left to right
- 4. Then addition and subtraction, from left to right
- 5. You can also create a little phrase to memorize, as the sequence: *Please Excuse My Dear Aunt Sally*

Some Basic Algebra Rules

found at http://www.themathpage.com/alg/rules-of-algebra.htm

 $1 \cdot a = a$ (-1)a = -a -a = (-1)a-(-a) = a. a + (-b) = a - b. a - (-b) = a + b. a+b = b+aa + b - c + d = b + d + a - c = -c + a + d + bp-q = p + (-q) = -q + p $a \cdot b = b \cdot a$ abcd = dbac = cdbaa + 0 = 0 + a = aa + (-a) = (-a) + a = 0If a = b, then b = aIf a = b, then a + c = b + ca = b, then ca = cbIf If abx = ac then bx = ca + (b - c + d) = a + b - c + da - (b - c + d) = a - b + c - d $a \cdot \frac{1}{a} = 1$

Algebra Basic Properties and Facts

Arithmetic Operations

ab + ac = a(b + c) $a\left(\frac{b}{c}\right) = \frac{ab}{c}$ $\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$ $\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$ $\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$ $\frac{a}{\left(\frac{b}{c}\right)} = \frac{ad+bc}{bd}$ $\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$ $\frac{a-b}{c-d} = \frac{b-a}{d-c}$ $\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$ $\frac{ab+ac}{a} = b + c, \ a \neq 0$ $\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{c}\right)} = \frac{ad}{bc}$

Exponent Properties

 $a^{n}a^{m} = a^{n+m} \qquad \frac{a^{n}}{a^{m}} = a^{n-m} = \frac{1}{a^{m-n}}$ $(a^{n})^{m} = a^{nm} \qquad a^{0} = 1, \ a \neq 0$ $(ab)^{n} = a^{n}b^{n} \qquad \left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$ $a^{-n} = \frac{1}{a^{n}} \qquad \frac{1}{a^{-n}} = a^{n}$ $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n} = \frac{b^{n}}{a^{n}}$ $a^{\frac{n}{m}} = \left(a^{\frac{1}{m}}\right)^{n} = (a^{n})^{\frac{1}{m}}$

Properties of Radicals

$$\sqrt[n]{a} = a^{\frac{1}{n}} \qquad \sqrt[n]{ab} = \sqrt[n]{a}^{\frac{n}{\sqrt{b}}}$$
$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a} \qquad \sqrt[n]{\left(\frac{a}{b}\right)} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
$$\sqrt[n]{a^n} = a, \text{ if } n \text{ is odd}$$
$$\sqrt[n]{a^n} = |a|, \text{ if } n \text{ is even}$$

Properties of Inequalities

If a < b then a + c < b + c and a - c < b - c

If
$$a < b$$
 and $c > 0$ then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$
If $a < b$ and $c < 0$ then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$

Distance Formula

If $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ are two points, the distance between them is

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Properties of Radicals

$$\sqrt[n]{a} = a^{\frac{1}{n}} \qquad \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$
$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
$$\sqrt[n]{a^{n}} = a, \text{ if } n \text{ is odd}$$
$$\sqrt[n]{a^{n}} = |a|, \text{ if } n \text{ is even}$$

Factoring and Solving

Factoring Formulas

$$x^{2} - a^{2} = (x + a) \times (x - a)$$

 $x^{2} + 2ax + a^{2} = (x + a)^{2}$
 $x^{2} - 2ax + a^{2} = (x - a)^{2}$
 $x^{2} + (a + b)x + ab = (x + a)(x + b)$
Square Root Property
If $x^{2} = p$ then $x = \pm \sqrt{p}$

Quadratic Formula
Solve
$$ax^2 + bx + c = 0, a \neq 0$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If $b^2 - 4ac > 0$ - Two real unequal solutions If $b^2 - 4ac = 0$ - Repeated real solutions If $b^2 - 4ac < 0$ - Two complex solutions

Completing the Square

Solve $2x^2 - 6x - 10 = 0$

(1) Divide by the coefficient of the x^2

$$x^2-3x-5=0$$

(2) Move the constant to the other side.

$$x^2 - 3x = 5$$

(3) Take half the coefficient of x, square it and add it to both sides

$$x^{2} - 3x + \left(-\frac{3}{2}\right)^{2} = 5 + \left(-\frac{3}{2}\right)^{2} = 5 + \frac{9}{4} = \frac{29}{4}$$

Line/Linear Function

$$y = mx + b$$

Graph is a line with point (0,*b*) and slope m.

Slope

Slope of the line containing the two points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{rise}{run}$$

(4) Factor the left side

$$\left(x-\frac{3}{2}\right)^2=\frac{29}{4}$$

(5) Use Square Root Property

$$x - \frac{3}{2} = \pm \sqrt{\frac{29}{4}} = \pm \frac{\sqrt{29}}{2}$$

(6) Solve for x

$$x=\frac{3}{2}\pm\frac{\sqrt{29}}{2}$$

Slope – intercept form The equation of the line with slope *m* and passing through the point (0, b) is

$$y = mx + b$$

Point – Slope form The equation of the line with slope *m* and passing through the point (x_1, y_1) is

$$y = y_1 + m(x - x_1)$$

For a complete set of online Algebra notes visit http://tutorial.math.lamar.edu.

Common Algebraic Errors

Error	Reason/Correct/Justification/Example
$\frac{2}{0} \neq 0 \text{ and } \frac{2}{0} \neq 2$	Division by zero is undefined!
$-3^2 \neq 9$	$-3^2 = -9$, $(-3)^2 = 9$ Watch parenthesis!
$(x^2)^3 \neq x^5$	$(x^2)^3 = x^2 x^2 x^2 = x^6$
$\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$	$\frac{1}{2} = \frac{1}{1+1} \neq \frac{1}{1} + \frac{1}{1} = 2$
$\frac{a+bx}{a} \neq 1 + bx$	$\frac{a+bx}{a} = \frac{a}{a} + \frac{bx}{a} = 1 + \frac{bx}{a}$ Beware of incorrect canceling
$-a(x-1)\neq -ax-a$	-a(x-1) = -ax + a Make sure you distribute the "-"!
$(x+a)^2 \neq x^2 + a^2$	$(x + a)^2 = (x + a)(x + a) = x^2 + 2ax + a^2$
$\sqrt{x^2 + a^2} \neq x + a$	$5 = \sqrt{25} = \sqrt{3^2 + 4^2} \neq \sqrt{3^2} + \sqrt{4^2} = 3 + 4 = 7$
$\sqrt{x+a} \neq \sqrt{x} + \sqrt{a}$	See previous error
$(x+a)^n \neq x^n + a^n$ and $\sqrt[n]{x+a} \neq \sqrt[n]{x} + \sqrt[n]{a}$	More general version of previous three errors.
$2(x+1)^2 \neq (2x+2)^2$	$2(x + 1)^{2} = 2(x^{2} + 2x + 1) = 2x^{2} + 4x + 2$ (2x + 2) ² = 4x ² + 8x + 4 Square first then distribute!
$(2x+2)^2 \neq 2(x+1)^2$	See the previous example. You can not factor out a constant if there is a power on the parenthesis!
$\sqrt{-x^2 + a^2} \neq -\sqrt{x^2 + a^2}$	$\sqrt{-x^2 + a^2} = (-x^2 + a^2)^{\frac{1}{2}}$ Now see the previous error.
$\frac{a}{\left(\frac{b}{c}\right)} \neq \frac{ab}{c}$	$\frac{a}{\left(\frac{b}{c}\right)} = \frac{\left(\frac{a}{1}\right)}{\left(\frac{b}{c}\right)} = \left(\frac{a}{1}\right)\left(\frac{c}{b}\right) = \frac{ac}{b}$
$\frac{\left(\frac{a}{b}\right)}{c} \neq \frac{ac}{b}$	$\frac{\left(\frac{a}{b}\right)}{c} = \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{1}\right)} = \left(\frac{a}{b}\right)\left(\frac{1}{c}\right) = \frac{a}{bc}$